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DETERMINATION OF FGXCTIVITIES USING W E D  NEUTRON TECHNIQUES 

FOR HIGHLY SUBCRITICAL SOLUTION REACTORS 

by Daniel Fieno, Thomas A. Fox, 
Robert A. Mueller, and C. Hubbard Ford 

L e w i s  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

INTRODUCTZON 

The NASA zero power solu5ion reactors  are convenient f o r  perfarming 

pulsed neutron experiments and making cor respnding  calculat ions f o r  systems 

ranging from c r i t i c a l  t o  highly subcr i t ica l .  These reac tors  consis t  o f  

solut ions of enriched (93.2 percent U235) uranyl f luor ide  salt  (UO2F2) 

dissolved i n  water and contained i n  a cy l indr ica l  aluminum vessel.  For a 

given concentration of uranyl f luoride sal t  i n  water, c r i t i c a l i t y  i s  achieved 

by ad jus t ing  the  height of  the  solution. No control  rods a r e  associated with 

these s s h t i s r :  reac tz rs .  Tk.,e gesmetry is thus idea l  for perfsrming pnlsed 

neutron experiments. The reactor  used f o r  t h e  pulsed experiments reported 

herein i s  described by Fox, e t  a l .  (1) 

The NASA so lu t ion  reactor  can thus be  pulsed as a subc r i t i ca l ,  homo- 

geneous, unreflected thermal system. The reactor  i s  made s u b c r i t i c a l  by 

simply lowering the  solut ion height. Since the  system i s  homogeneous and 

unref lected,  t h e  delayed component of each mode is  expected t o  have the  same 

energy and s p a t i a l  d i s t r ibu t ions  as the  correspnding prompt component. 

severa l  impartant t heo re t i ca l  l imitat ions on the  so-called "area" methods o f  

Garelis and Russell,  ( 2 )  Sjostrand, ( 3 )  and G ~ z a n i ( ~ )  for determining sub- 

Thus, 

c r i t i c a l  r e a c t i v i t i e s  a r e  removed. 

Reac t iv i t ies  were determined using these "areatt  methods and compared 

t o  absolute  c r i t i c a l i t y  calculat ions f o r  a large range o f  shutdown r e a c t i v i t i e s .  

TM X-52369 
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In  addition, the  method o f  Simmons and King(5) f o r  determining s u b c r i t i c a l  

r e a c t i v i t i e s  from the  measured prompt fundamental mode decay constants of  

a subc r i t i ca l  and correspnding delayed c r i t i c a l  system w a s  applied. 

EXPERlNEWTAL GEOMETRY 
* 

Figure 1 i s  a schematic drawn t o  scale of t he  solut ion reactor  used 

f o r  t he  pulsed neutron experiments. Although there  i s  provision for a 

water s ide  re f lec tor ,  the experiments were performed with the  system unre- 

f lec ted .  The inside diameter of  t he  cy l indr ica l  tank i s  76.2 centimeters. 

For a f u e l  so lu t ion  having a hydrogen to  uranium-235 atom r a t i o  o f  975 

the  nominal solut ion height a t  delayed c r i t i c a l  i s  26.8 centimeters. The 

r e su l t i ng  reactor  i s  disk shaped with a height t o  diameter r a t i o  o f  0.35. 

The cy l ind r i ca l  reactor  vessel  i s  made of  aluminum having a s ide  w a l l  

thickness o f  0 .70 centimeters and a bottom pla te  thickness of  1.27 cen- 

t imeters .  

The pulsed neutron source w a s  centered a t  t he  bottom of  the reac tor  
10 

tank. The neutron detector  was a BF (96 percent B ) p r o p r t i o n a l  counter. 

me measurements were made with t h i s  dzteztcr  located ir? the f i ~ l  solution. 

3 
1 7  

The de tec tor  was positioned a t  0.44 of t he  tank radius and a t  two-thirds of  

t h e  so lu t ion  height. The BF detector i n  t h i s  system a c t s  as a point de- 

t e c t o r  (0.8 centimeter diameter) and does not appreciably perturb t h e  

3 

measurements. 

EXPERIMEXTAL PROCEDURE 

For a given subc r i t i ca l  solut ion height, the  reactor  was pulsed repe- 

t i t i v e l y  u n t i l  adequate counting s t a t i s t i c s  were obtained. 

block diagram of t he  electronic  equipment arrangement used for these ex- 

Figure 2 i s  a 



- 3 -  

. 

periments. 

per second. 

onds f o r  s u b c r i t i c a l  systems near delayed c r i t i c a l  while the  width f o r  t h e  

highly s u b c r i t i c a l  systems w a s  50 microseconds. For systems near delayed 

c r i t i c a l  the  data were collected overan i n t e r v a l  of about 5 minutes while 

for the  highly shutdown systems about 90 minutes were required t o  obtain a 

suf f ic ien t  number of counts 

The s u b c r i t i c a l  reactor  was pulsed a t  a r a t e  of 5 t o  6 pulses 

The multichannel analyzer had a channel width of  400 microsec- 

Figure 3 is a schematic representation of an idealized pulsed neutron 

experiment. The background corrected logarithm of the  detector  response 

is p lo t ted  a s  a function of t he  analyzer channel number. Shown i s  the  

equilibrium delayed neutron contribution pers i s t ing  following the  decay 

of t he  prompt neutron portion o f  t he  curve. 

t i o n  of  t h e  curve y ie lds  the  prompt fundamental mode decay constant. 

areas cor respnding  t o  t h e  time in tegra ls  o f  t he  prompt as well  as t h e  

delayed neutrons a r e  a l s o  shown on the figure. 

The slope o f  the prompt por- 

The 

Figure 4 indicates  how the  experimental data  obtained f o r  a subc r i t i -  

CAI reactQr a_re relat.ed- to the reac t iv i t ies  evaluated by the various "area" 

methods mentioned previously. 

method of Sjostrand i s  obtained by taking the  r a t i o  of  the prompt neutron 

area  t o  t h e  delayed neutron area. The r e a c t i v i t y  i n  dol lars  f o r  t h e  "area" 

method of mzan i  i s  obtained by taking the  r a t i o  of t h e  extrapolated prompt 

fundamental mode area t o  the  delayed neutron area. 

method, t h e  prompt neutron response i s  weighted by the  fac tor  exp ( c t ) ,  

then integrated over time. The quantity c is adjusted so t h a t  t h i s  in te -  

g r a l  equals t he  prompt plus delayed neutron area.  

The r eac t iv i ty  i n  do l l a r s  f o r  t h e  "area" 

I n  the  Garelis-Russell 

The r e a c t i v i t y  i n  dol la rs  
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i s  then given by 

where a. is a negative number, t he  prompt fundamental mode decay constant. 

For the  Simmons-King method the  r eac t iv i ty  i n  do l l a r s  i s  given by 

a. - ac -d$> = 

where ac is t h e  prompt fundamental mode decay constant measured a t  delayed 

c r i t i c a l .  

The experimental data were reduced using a modified version of a com- 

mis program a lso  computes experi- puter program developed by Masters. (6 )  

mental errms based on counting s t a t i s t i c s  only. 

ABSOLVE3 CRITICALITY CALCULATIONS 

One dimensional calculat ions along the  ax i s  o f  these cy l indr ica l  sys- 

tems were performed using the  8n method. 

e x p l i c i t y  considered i n  t h e  t ranspor t  calculations.  

w i t h  the e l a s t i c  scat.t.erjng treated i n  P; approximation w a s  found t o  be 

adequate i n  t r e a t i n g  the  neutron leakage from the  ends of these subc r i t i ca l  

so lu t ion  reactors .  

o f  t h e  system. 

and one thermal group which included an up-scattering transfer component. 

The fas t  group cross sect ions were obtained using the  GAM-I1 code(7) while 

t h e  thermal group cross sections were obtained using the  GATHER-I1 code(8). 

Calculations using t h i s  Sn method along with GAM-GATHER cross sect ions have 

accura te ly  predicted the  c r i t i c a l i t y  o f  these solut ion reactors  over a wide 

The aluminum bottom pla te  was 

The S4 approximation 

Radial leakage was calculated from t h e  radial buckling 

These calculations used eight  energy groups - seven fast 
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range o f  composition and configuration. For these experiments the  de- 

layed c r i t i c a l  height was calculated t o  be 26.80 centimeters f o r  the  f u e l  

solut ion having a hydrogen t a  uranim-235 atom r a t i o  of 975. This calcu- 

l a t ed  value d i f f e r s  from t h e  corresponding experimental value by less 

than 0.20 centimeters. 

The prompt fundamental mode decay constants and s u b c r i t i c a l  r eac t i -  

v i t ies  f o r  various solut ion heights were calculated from t h e  Sn r e s u l t s  

by a procedure described by Wallace, e t  a l .  

of t h e  calculat ion of t he  prompt fundamental mode decay constant and cor- 

responding value of t h e  s u b c r i t i c a l  r eac t iv i ty  a r e  a l so  given by Masters, 

Excellent discussions (10) 

e t  al.. (I1) and by Preskett ,  e t  al. (12)  

RESULTS 

Using t h e  methods discussed, calculations and experiments have been 

performed f o r  a range of f u e l  solut ion heights. The calculated var ia t ion 

with so lu t ion  height of t he  reactor  parameters required a re  presented i n  

f igures  5-8. 

K 

a fuel so lu t ion  height varying from about 13 t o  26.8 centimeters. 

6 shows t h e  prompt neutron l i fe t ime as a function of f u e l  solut ion height. 

Over t h e  range o f  fuel solut ion heights studied, the  lifetime varies  from 

about 59 t o  64 microseconds. Figure 7 shows t h e  var ia t ion  of t he  e f fec t ive  

delayed neutron f rac t ion ,  Peff with solution height. 

0.00520 t o  0.00736 over the  range of fuel solut ion heights studied. 

value of p w a s  taken as 0.0065 f o r  uranium-235. Figure 8 shows t h e  var ia-  

t i o n  o f  t he  parameter Peff /2  a s  a function of fuel solut ion height. 

Calculated values of the e f fec t ive  mult ipl icat ion factor ,  

are in figmy 5. IC .Tcyies *nnm I J . " ~ , ,  U W " U "  a k n r 7 . I -  0.64 t2 1.m f3r 
e f f ,  e f f  

Figure 

Peff var ies  from 

The 

This 
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I 

parameter varies from about 89 t o  115 per second over t h e  range of f u e l  

solut ion heights studied. 

Figure 9 shows the calculated and experimental value of the  prompt 

fundamental mode decay constant, a 

of solut ion height from delayed c r i t i c a l ,  AH, i n  centimeters. 

c r i t i c a l  the  value of a:, is about 115, 

t o  about 2500 agree well with experimental values. 

AH varying from 0 t o  7.5 centimeters. For values of AH from 7.5 t o  over 

1 2  centimeters, t h e  calculated values a re  somewhat higher than the  cor- 

r e s p n d i n g  experimental values. 

lated values of a,o a r e  about 10 percent higher than the  experimental 

values. Table 1 shows the  same data in tabulated form. 

i n  see'' as a function of  difference 

A t  delayed 

o J  

Calculated values of a. from 115 

This corresponds t o  

For the extreme values of AH the  calcu- 

Figure 10 shows t h e  calculated and experimental value of t he  reac- 

t i v i t y ,  p, i n  do l la rs  as a function of solut ion height from delayed c r i -  

t i c a l .  The r e a c t i v i t y  varied from zero t o  about 50 dol la rs .  A s  can be 

seen t h e  "area" method o f  Sjostrand f o r  determining r e a c t i v i t y  agrees 

reas3rla-Diy weli witii yLie -e VCLLUc;D 1 .. h" u v G L  -..,.en t k e  range emsidered. The 

"area" methods of Garelis-Russell and mzani  f o r  determining r eac t iv i ty  

gave near ly  t h e  same values over t h e  range considered. 

Russel l  and Gozani "area" methods gave higher values f o r  t he  r e a c t i v i t y  

by from 10 t o  20 percent than did either the  method of Sjostrand or t h e  

t h e o r e t i c a l  calculations.  

Both the  Garelis- 

Table 2 presents t h e  r e a c t i v i t y  determinations i n  tabular  form. Also 

shown are values o f  the r eac t iv i ty  calculated by t h e  method o f  S i m n s  and 

King. 

s ide rab ly  lower than the  calculated values. 

Bepnd a f e w  do l la rs  of  react ivi ty ,  t h i s  method gave values con- 
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CONCLUSIONS 

A number of conclusions result from t h i s  study of an unreflected, 

homogeneous, thermal solut ion reac tor  from c r i t i c a l i t y  t o  about $50 

shutdown : 

1. Calculated values o f  t h e  prompt fundamental mode decay constants 

agree w e l l  with experimentally determined values. 

2. The "area" method of Sjostrand f o r  determining r e a c t i v i t y  agrees 

reasonably w e l l  with t h e  calculated values over t h e  e n t i r e  range. 

3. The "area" methods o f  Garelis-Russell and Cbzani both predicted 

r e a c t i v i t i e s  t h a t  a r e  consis tent ly  higher by 10 t o  20 percent than t h e  

calculated values and were i n  agreement with each other.  

4. A l l  o f  the  area methods a r e  sens i t ive  t o  an accurate experimental 

determination o f  t h e  equilibrium delayed neutron background. 

E e  method cf Sinncns nnd King gave values f o r  t h e  r e a c t i v i t y  5. 

considerably lower than t h e  calculated values over most of t h e  range o f  

so lu t ion  heights considered. The method fa i l s  because t h e  value o f  P / 2  

used is  t h a t  a t  delayed c r i t i c a l  which changes s t rongly with increasing 

sub c r i t  i c a l i t y .  
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PROMPT FUNDAMENTAL MODE DECAY CONSTANTS 
FOR NASA SOLUTION REACTOR 

S O L U T I O N  H E I G H T  
F R O M  C R I T I C A L I T Y ,  

- A H  ( C M )  

0 
0. 1 3  
0. 26  
0. 5 1  
0 . 7 6  
1. 0 3  
2 . 0 1  
3 . 0 6  
4. 0 4  
5 . 0 8  
6 .  1 2  
7 . 1 0  
8. 1 4  
9. 15 

1 0 . 6 5  
12.  17 

P R O M P T  F U N D A M E N T A L  M O D E  
D E C A Y  C O N S T A N T .  a, ( S E C - ~ I  

C A L C U L A T E D  

1 1 6  
1 4 5  
1 7 4  
225 
2 8 0  
3 4 0  
5 9 0  
8 7 0  

1 1 7 0  
1 5 2 0  
1 8 9 0  
2275  
2 7 4 0  
3 2 4 0  
4 0 7 0  

E X P E R I M E N T A L "  

1 2 8  f 0 . 6  
1 5 6  f 0 . 5  
1 8 1  +_ 0 . 5  
2 3 4  f 0 . 5  
289  f 0 . 5  
3 4 8  +_ 0 . 6  
5 7 2  t 1 . 2  
8 4 0  f 2 . 3  

1110 f 2 . 4  
1 4 3 4  f 3 . 3  
1 7 9 1  +_ 3 . 4  
2 1 5 9  f 5.  2 
2 5 4 8  ? 5 . 8  
3 0 0 8  f 6 .  2 
3 7 9 5  f 11 

C O U N T I N G  S T A T I S T I C S  O N L Y .  c 5-44795 
TABLE I 

REACTIVITIES FOR NASA SOLUTION REACTOR 

S O L U T I O N  H E I G H T  
F R O M  C R I T I C A L I T Y ,  

- A H  ( C M I  

0. 1 3  
0 . 2 6  

0. 5 1  
0 . 7 6  
1 . 0 3  
2 . 0 1  
3 . 0 6  
4 . 0 4  
5 . 0 8  
6 .  1 2  
7 . 1 0  
8 .  1 4  
9 .  1 5  

1 0 . 6 5  
12 .  17  

C A L C .  

0. 2 6  
6 . 5 2  
1 . 0 4  
1 . 5 3  
2. 07  
4 . 3 0  
6 . 9 3  
9 . 6 0  

1 3 . 0 0  
1 6 . 8 0  
2 0 . 6 0  
2 5 . 5 0  
3 0 . 9 0  
4 0 . 7 0  
5 3 . 4 0  

S J O S T R A N D  

0. 23 f 0 . 0 0 2  
0.49 I o . o c 3  
1 . 0 8  f 0 . 0 1  
1 . 7 1  f 0 . 0 1  
2. 29 2 0 . 0 1  
4 .  7 8  f 0 . 0 5  
7 . 5 0  ? 0 . 1 0  
9 . 9 4  f 0 . 1 2  

1 2 . 7 9  +_ 0 .17  
1 6 . 3 6  & 0 . 2 0  
2 0 . 3 6  f 0 . 3 2  
2 5 . 3 2  f 0 . 4 4  
30 .  36  t 0 . 6 8  
38.  65 f 1 . 2  
4 7 . 4 5  +_ 1 . 6  

R E A C T I V I T Y .  - P  ($1. 

G O Z A N I  

0 . 2 4  f 0 . 0 0 1  
3.51 f 2 . 9 9 2  
1 . 1 2  f 0 . 0 1  
1 . 8 0  f 0 . 0 1  
2 . 4 1  f 0 . 0 1  
5 . 1 2  +_ 0 . 0 5  
8 .  2 2  f 0. 10 

1 1 . 0 8  f 0 . 1 3  
1 4 .  6 6  f 0. 1 9  
1 9 . 2 4  f 0 . 2 3  
2 4 . 0 9  +- 0 . 3 8  
3 0 . 1 5  f 0 . 5 2  
3 5 . 8 2  f 0 . 8 0  
4 5 . 5 7  f 1 . 4  
5 2 . 9 8  f 1 . 8  

G A R E L I S -  
R U S S E L L  

* * *  

"35 1 c1.004 
0 . 9 9  f 0 . 0 1  
1 . 7 6  f 0 . 0 1  
2 . 4 0  +_ 0 . 0 2  
5.  08  f 0 . 0 7  
8 .  13  +_ 0. 17  

1 0 . 9 5  f 0 . 2 7  
1 4 . 4 8  f 0 . 4 3  
19 .  0 6  f 0 . 6 0  
23.  8 2  f 1. 1 
2 9 . 4 3  f 1 . 7  
3 5 . 3 2  f 2 . 1  
4 3 . 9 9  f 3 . 8  
5 3 . 9 6  +_ 6 .  1 

S I M M O N S  - 
K I N G " "  

~~ 

0 . 3 4  
0.56 
1 . 0 2  
1 . 4 9  
2.  00 
3 . 9 3  
6.  2 4  
8 .  57 

1 1 . 3 6  
1 4 . 4 4  
1 7 . 6 1  
2 0 . 9 7  
2 4 .  93  
3 1 .  7 2  
3 8 .  88  

* E X P E R I M E N T A L  E R R O R S  ARE S T A N D A R D  D E V I A T I O N S  B A S E D  ON C O U N T I N G  
S T A T I S T I C S  O N L Y .  

" ' B A S E D  O N  C A L C U L A T E D  a c  O F  1 1 6  

* * " N O T  O B T A I N A B L E  F R O M  D A T A .  cs-44799 
TABLE I1 



TYPICAL PULSING GEOMETRY FOR UNREFLECTED 
NASA SOLUTION REACTOR 

D R A W N  TO S C A L E  

C R I T I C A L  H E I G H T  
2 6 . 8  CM-, 

U 0 2 F 2  -I H 2 0  SOLUTION, 

( N H / N U - 2 3 5  = 9 7 5 )  

B F 3  DETECTOR P R O B E  
/- 

r 3  B F  DETECTOR 

W ‘-PULSED N E U T R O N  S O U R C E  
cs-44794 

Figure 1. 

DIAGRAM OF PULSED NEUTRON EXPERIMENTS 
IN NASA SOLUTION REACTOR 

P R E A M P L I F I E R  

I 
M U L T I C H A N N E L  

R E A C T O R  D I G I T A L  O U T P U T  SWEEP 
TRIGGER 

P U L S E  v 
I P U L S E D  N E U T R O N  

S O U R C E  C O N T R O L  

1 S O U R C E  
CS-44792 UNlT 

Figure 2. 



IDEAL DETECTOR RESPONSE TO PULSED NEUTRON SOURCE 

LOG 
(DETECTOR 
R E S P O N S E )  

P R O M P T  F U N D A M E N T A L  M O D E  

P R O M P T  N E U T R O N  A R E A  

P R O M P T  N E U T R O N S  

D E L A Y E D  N E U T R O N S  

A N A L Y Z E R  C H A N N E L  NO.  ( T I M E )  CS-44789 

Figure 3. 

DETERMINATION OF REACTIVITIES FROM EXPERIMENTAL DATA 

A.  M O D I F I E D  P U L S E D  N E U T R O N  E X P E R I M E N T S  
1. S J U S T K A N D  

P R O M P T  N E U T R O N  A R E A  
D E L A Y E D  N E U T R O N  A R E A  - p ( $ )  = 
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EFFECTIVE MULTIPLICATION FACTOR VS. REACTOR HEIGHT 
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NEUTRON LIFETIME VS. REACTOR HEIGHT 
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EFFECTIVE DELAYED NEUTRON FRACTION VS. REACTOR HEIGHT 
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DECAY CONSTANTS FOR NASA SOLUTION REACTOR 
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Figure 9. 
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